Programming-in-the-Many:
A Software Engineering Paradigm for the 21st Century
Nenad Medvidovic Marija Mikic-Rakic

Henry Salvatori Computer Science Center 338
Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781 U.S.A.
{neno,marija}@usc.edu

ABSTRACT

Over the past severa decades software researchers and practitioners have proposed various approaches,
techniques, and tools for developing large-scale software systems. The results of these efforts have been
characterized as programming-in-the-large (PitL). A new set of challenges has arisen with the emergence
of inexpensive, small, heterogeneous, resource-constrained, possibly embedded, highly-distributed, and
highly-mobile computing platforms. We refer to software development in this new setting as program-
ming-in-the-many (PitM). This paper argues for a concerted research effort needed to address the chal-
lenges of PitM. As “proof-of-concept” we highlight the results of aresearch project we have conducted in
this area over the past two years. While the details of our work may not be universaly applicable, we
believe that our approach suggests a plausible software engineering research agenda for the future. The
centerpiece of our approach is a software architectural style with explicit support for the needs of PitM
applications: self-awareness, distribution, heterogeneity, dynamism, mobility, and disconnected opera-
tion. The style is accompanied by a set of implementation, deployment, and runtime evolution tools tar-
geted to a variety of traditional (i.e., desktop) and mobile computing platforms. Our approach has been
successfully applied on several applications. While a number of issues pertaining to PitM remain areas of
future work, our experience to date has been very positive.



1 INTRODUCTION

The software systems of today are rapidly growing in size,
complexity, amount of distribution, heterogeneity of constitu-
ent building blocks (components), and numbers of users. We
have recently witnessed a rapid increase in the speed and
capacity of hardware, adecrease in its cost, the emergence of
the Internet as a critical worldwide resource, and a prolifera
tion of hand-held consumer electronics devices (e.g., mobile
phones, personal digital assistants). In turn, this has resulted
in an increased demand for software applications, outpacing
our ability to produce them, both in terms of their sheer num-
bers and the sophistication demanded of them.

One can now envision a number of complex software devel-
opment scenarios involving fleets of mobile devices used in
environment and land-use monitoring, freeway-traffic man-
agement, fire fighting, and damage surveys in times of natu-
ral disaster. In addition, the military relevance of such
scenarios is rapidly increasing, as evidenced by the recent
purchase of up to 80,000 Palm Pilot hand-held computers by
the U.S. Army and Navy and the designation of the USS
McFaul asa*“test platform” for hand-helds [13]. Such scenar-
ios present daunting technical challenges: effective under-
standing of existing or prospective software configurations;
rapid composability and dynamic reconfigurability of soft-
ware; mobility of hardware, data, and code; scalability to
large amounts of data, numbers of data types, and numbers of
devices; and heterogeneity of the software executing on each
device and across devices. Furthermore, software often must
execute in the face of highly constrained resources, charac-
terized by limited power, low network bandwidth and patchy
connectivity, slow CPU speed, and limited memory and per-
sistent storage.

These challenges paint a picture that traditional software
technologies and development methods are unable to prop-
erly address. The traditional approaches are primarily geared
toward supporting development and evolution of large-scale
software systems, but whose degrees of distribution, hetero-
geneity, dynamism, mobility, and resource constraints are
substantialy lower than demanded by the scenarios outlined
above. The set of problems addressed by the traditional soft-
ware development approaches has been characterized as pro-
gramming-in-the-large (PitL) [2]. We argue that this new set
of challenges can be more appropriately characterized as pro-
gramming-in-the-many (PitM): software development sup-
port for highly distributed, dynamic, mobile, heterogeneous,
resource-constrained computation. This paper argues for the
need to develop methods, techniques, and tools whose goal is
to address the challenges of PitM.

We believe the most effective approach to PitM will be to
interweave ideas that had been explored in the past with new
ideas, adopting and, where necessary, adapting the results of
existing software devel opment techniques. At the same time,
an effective approach to PitM will require novel solutions
spanning at least six key areas:
* explicit design idioms comprising an architectural style
[9,11];
« architectural self-awareness to enable continuous archi-
tectural monitoring, analysis, and evolution;
« tailorable architecture implementation, deployment, and
evolution infrastructure;
« explicit, first-class software connectors [8];

» architecture-based support for distributed application
deployment, mobility, and dynamic reconfiguration; and
« support for disconnected operation.

We have begun exploring these issues and applying our
results on a handful of applications executing on a variety of
desktop and mobile computing platforms. While several of
the aspects of the proposed approach would be by themselves
important contributions to the software engineering state-of -
the-practice (e.g., architectural style for PitM, architectural
self-awareness, support for disconnected operation), their
true benefit will lie in their combination. In turn, this combi-
nation has the potential to set the long-term research and
development agenda for PitM.

The remainder of the paper is organized as follows. Section 2
discusses the nature of the problem we are addressing while
Section 3 introduces an example application. Section 4
argues for an architectural approach to PitM. Throughout the
paper, we highlight the pertinent results from our own
research into PitM.

2 PITM CHALLENGES

While PitL has for decades dealt with the engineering of
large and complex software systems, PitM presents a number
of additional, unique challenges [7]. In the interest of space,
we only present a cross-section of the challenges here.

One such challenge is resource constraints. Devices on which
applications reside may have limited power, network band-
width, processor speed, memory, and display size and resolu-
tion. Constraints such as these demand highly efficient
software systems, in terms of computation, communication,
and memory footprint. They also demand more unorthodox
solutions such as “off-loading” (i.e., distributing) non-essen-
tial parts of a system to other devices.

Another challenge faced by PitM is the heterogeneity of the
hardware and system software. Although standardization
efforts have been undertaken for the emerging new class of
mobile devices (e.g., various wireless network protocols), the
world of PitM is still characterized by proprietary operating
systems (e.g., PAlmOS), specialized dialects of existing pro-
gramming languages (e.g., Java KVM [12] for the PAlmOS),
and device-specific data formats.

Yet another challenge of PitM is effective support for inter-
device interaction and code mobility. As numerous new,
small, mobile platforms emerge, their devel opers make trade-
offs to address the computing constraints imposed by the
platforms. The infrastructures of the emerging novel or
experimental technologies may thus be missing certain ser-
vices for reasons of efficiency (or accidental omission). For
example, Java KVM does not support non-integer numerical
data types or server-side sockets. Similarly, typicaly
employed techniques for code mobility, such as Java serial-
ization or XML encoding, may not be supported because they
are computationally too expensive.

Finally, PitM inherits many of the challenges faced in PitL.
Application modeling, analysis, simulation, and generation
are problems on which software engineering researchers and
practitioners have been working actively for several decades.
These problems are only amplified in the highly distributed,
heterogeneous, and mobile world of PitM. Certain techniques
recently devised for dealing with these problems, such as



component-based software development, might prove effec-
tive in the context of PitM. However, the manner and extent
to which those techniques must be adapted remain open
issues.

For this very reason, the basic principle of our suggested
approach to supporting PitM is to reuse solutions, and thus
reap the benefits, of existing software engineering research
and practice (i.e., PitL) whenever possible, inventing new
solutions only as necessary. In particular, one area from
which we believe we may be able to gain alot of leverageis
software architecture [9,11]. Several aspects of architecture-
based development (component-based system composition,
explicit software connectors, architectural styles, upstream
system analysis and simulation, and support for dynamism)
make it a particularly good fit for the needs of PitM as further
detailed below.

3 EXAMPLE APPLICATION

To illustrate the challenges posed by PitM we use an applica
tion for distributed military Troops Deployment and battle
Simulations (TDS), depicted in Figure 1. We have designed,
analyzed, implemented, deployed, migrated, and dynamically
evolved TDS using a specific instance [7] of the architecture-
based techniques for PitM advocated in this paper. Several
aspects of TDS embody the concept of multiplicity inherent
in PitM (“many”). The application is implemented in four
dialects of two programming languages. Java VM, Java
KVM, C++, and Embedded Visual C++ (EVC++). The appli-
cation is deployed on five devices, four of which are mobile.
The TDS subsystem on each device can run using an arbi-
trary number of threads of control. The devices are of three
different types (Palm Filot, iPAQ, PC), running three operat-
ing systems (PalmOS, WindowsCE, and Windows98, respec-
tively); in addition, several analysis components used in
support of code mobility and disconnected operation run on a
fourth platform (Sun) and OS (Unix).

4 ARCHITECTURAL SUPPORT FORPITM
A set of design idioms is needed to effectively capture appli-
cation architectures found in the PitM setting. These idioms,

comprising an architectural style, must be able to address the
key characteristics of PitM discussed in Section 1: architec-
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tural monitoring and analysis, distribution, dynamism, mobil-
ity, and disconnected operation. A number of existing styles,
particularly those supporting distributed applications [3],
may inform the development of the PitM style.

In our investigation of PitM to date, we have leveraged our
experience with the C2 architectural style [14]. Severa char-
acteristics of C2 (distributed architectures, autonomous com-
ponents communicating through explicit connectors,
substrate independence, and dynamism) are a good fit for the
needs of PitM. However, support for other aspects of PitM
(deployment, mohility, and disconnected operation) must be
built on top of C2's existing facilities. Moreover, certain
aspects of PitM simply cannot be supported by C2. For
example, C2 mandates that components engage in asynchro-
nous interactions only, making it ill suited for applications
with real-time requirements. Furthermore, C2 imposes a
strictly vertical topological orientation on architectures. This
orientation is suited for a client-server style of interaction,
but not for peer-to-peer interaction, which becomes critical as
PitM applications become more widely distributed and
decentralized.

For these reasons, we have investigated seven major
enhancements to the C2 style to account for the above short-
comings, as discussed below. It should be noted that, while
we do not expect that all approaches to PitM would follow
the same path we undertook (e.g., they would not be based on
C2), we believe that these seven enhancements form a stable,
generally applicable foundation for studying and addressing
the challenges of PitM.

4.1 Peer-to-Peer Interaction

In order to support peer-to-peer interactions, we have intro-
duced an extension to the C2-style by adding a hew compo-
nent port (called side) and message category (caled peer).
Side ports alleviate the relative topological rigidity of C2. At
the same time, new composition rules are introduced to pre-
serve the beneficial topological constraints of C2. For exam-
ple, two PitM components may not engage in interaction via
peer messages if there exists a vertical topological relation-
ship between them. Allowing such interaction would violate
the principle inherited from C2 that components are indepen-
dent of their substrate.

4.2 Architectural Self-Awareness

The nature of PitM applications demands support for their
on-going monitoring, dynamic reconfiguration, deployment,
mobility, and disconnected operation. To effectively address
these needs, PitM should support architectures at two levels:
application-level and meta-level. The role of components at
the PitM meta-level is to observe and/or facilitate different
aspects of the execution of application-level components.

In support of such a two-level architecture, we have identi-
fied the need for at least three types of communication mes-
sages. ApplicationData messages are used by application-
level components to interact during execution. The other two
message types, ComponentContent and ArchitecturalModel,
are used by meta-level components. ComponentContent mes-
sages contain mobile code and accompanying information
(e.g., the location of a migrant component in the destination
configuration), while ArchitecturalModel messages carry
information needed to perform architecture-level analyses of
prospective PitM configurations.
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Figure 2. Architecture of the TDS application, displayed in Prism, the
PitM deployment environment. The unlabeled circles connecting
components across the hand-held devices represent peer connectors.

To date, we have developed severa specia-purpose meta-
level components. For example, to facilitate deployment and
migration of application components across devices (using
ComponentContent messages) we have developed Admin
Components; to analyze the architectural models during the
application’s execution (using ArchitecturalModel mes-
sages), we have developed meta-level Continuous Analysis
components.

4.3 Border Connectors

The third significant departure from C2 in formulating the
PitM style is the key role of connectors that span device
boundaries. Such connectors, called border connectors,
enable the interactions of components residing on one device
with components on other devices. The high degrees of dis-
tribution and mobility, as well as the high probability of dis-
connected operation in PitM architectures have caused us to
place special importance upon border connectors. A single
border connector may service network links to multiple
devices (e.g., BottomBorderConnector on the PC in Figure
2). A border connector marshals and unmarshals data, code,
and architectural models; dispatches and receives messages
across the network; and monitors the network links for dis-
connection. It may aso perform data compression for effi-
ciency and encryption for security.

4.4 Implementation

The proposed extensions to the C2 style outlined above pro-
vide stylistic guidelines for composing large, distributed,
mobile systems. For these guidelines to be useful in a devel-
opment setting, they must be accompanied by support for
their implementation. The implementation support must be
highly efficient to account for the resource constrained nature
of hardware platforms in the PitM setting. At the same time,
we believe that the support must be provided in mainstream
programming languages (e.g., as opposed to the frequently
used special-purpose languages for embedded systems[7]) in
order to betruly usable.

= To this end, we have developed a light-weight architecture

implementation infrastructure. The infrastructure comprises
an extensible framework of implementation-level modules
representing the key elements of the proposed style (e.g.,
architectures, components, connectors, ports, messages) and
their characteristics (e.g., a message has a name and a set of
parameters). An application architecture is then constructed
using this base framework by extending the appropriate
classes in the framework with application-specific detail. The
framework has been implemented in several programming
languages: Python, Java VM and KVM, C++ and EV C++.

To support a variety of development situations in the PitM
setting, we have implemented a library of PitM connectors on
top of the framework [7]. These include basic connector s that
support both synchronous and asynchronous message broad-
cast, multicast, and unicast; border connectors that encapsu-
late component interactions across process and machine
boundaries (including infra-red and XML -based connectors);
and multi-versioning connectors [10] that support reliable
upgrading of application functionality at runtime.

4.5 Deployment

Support for software deployment is critical in highly distrib-
uted systems such as those found in PitM [5]. However,
existing deployment techniques (e.g., Software Dock [5])
may not be suitable for this setting because of the much
larger numbers of devices involved, their mobility, and their
resource scarcity. Instead, much lighter-weight approaches
are needed that will directly leverage the architectural basis
of PitM.

Our support for deployment directly leverages the PitM
implementation infrastructure. In order to deploy the desired
configuration on a set of target hosts, we assume that a skele-
ton configuration, consisting of a border connector and the
meta-level AdminComponent that supports code migration, is
prel oaded on each host. We have integrated and extended the
COTS Microsoft Visio tool to develop Prism, the PitM archi-
tectural modeling and deployment environment (see Figure
2). Prism creates a description of the configuration and
directly invokes the skeleton configuration on its local
device. The skeleton configuration’s Admin Component
waits for each device specified in the hardware configuration
to connect, reads the description generated by Prism, and
sends appropriate ComponentContent messages to Admin
Components residing on the connected devices, which, in
turn, perform the deployment of the specified configuration.

4.6 Mobility and Dynamic Reconfiguration

If, during the application’s execution, a desired component-
or system-level property is violated, the architecture may
decide to reconfigure itself. We use the same technique for
supporting runtime component mobility as we do for deploy-
ment: Admin Components exchanging ComponentContent
messages that contain mobile code. This choice is made,
again, because the nature of PitM applications and deviceson
which they execute will demand more efficient solutions than
those provided by existing code mobility techniques (e.g.,
[4]). Performing the migration or dynamic reconfiguration
resultsin the following process:

1. The migrant component is disconnected from its attached

connectors.



2. Admin Component on the source device unloads the
migrant component from the local subsystem.

3. Admin Component on the source device packages the
migrant component and sends it as a ComponentContent
message through itslocal Border Connector.

4. Once received by the Border Connector on the destina
tion device, the ComponentContent message is forwarded
to the local Admin Component which instantiates and
attaches the received migrant component to the appropri-
ate connectorsin itslocal subsystem.

4.7 Disconnected Operation

Due to the nature of mobile devices, their network connec-
tions are intermittent, with periods of disconnection. In order
to effectively support PitM applications in the face of con-
nectivity losses, we should try to minimize the risks associ-
ated with disconnection. We propose maximizing the
availability of an application during disconnection by migrat-
ing components from neighboring hoststo alocal host before
the disconnection occurs. The set of components to be
migrated should be chosen such that it maximizes the auton-
omy of the local subsystem during disconnection, stays
within the memory constraints imposed by the device, and
can be migrated within the time remaining before disconnec-
tion occurs. Thisis adifficult problem in general [6], but we
believe that we can leverage the architectural basis of the
approach to PitM in solving it. We have done so in providing
preliminary support for disconnected operation in our
approach, as follows.

In order to select the best component set for migration, for
each candidate component we need to know (1) the benefit of
migration, expressed as the increase in the application’s
availability on a given device if the component is migrated
and (2) the required memory for loading the component. One
possible approach to calculating the benefit of migration is
proposed in [7]. The problem of selecting the best set of com-
ponents for migration given a set of n candidate components
isthen stated asfollows. Given the total available memory on
the device, and benefit and required memory for each candi-
date component, select a subset of the candidate component
set that maximizes the total benefit (as the sum of benefits of
individual components). As stated, this problem represents a
simplification of the actual problem: it assumes that the bene-
fits of individual components are mutually exclusive, thus
becoming an approximation in the case of highly-coupled
components. At the sametime, this simplification is a variant
of the well studied 0-1-knapsack problem, and can be solved
in polynomial time using dynamic programming [1].

5 CONCLUSIONSAND FUTURE WORK

Over the past severa decades software researchers and prac-
titioners have proposed various approaches, techniques, and
tools for developing ever larger, more complex systems. The
results of these efforts have shared a number of traits: system
size and complexity, possible distribution across desktop
platforms, focus on modeling and analysis before implemen-
tation, accopmanying development environments, explicit
software architectures, and so forth. The resulting software
development paradigm has been referred to as programming-
in-the-large (PitL) [2]. This paper has argued for solutions to
anew set of software engineering challenges that have arisen
with the emergence of inexpensive, small, heterogeneous,

resource-constrained, possibly embedded, highly-distrib-
uted, and highly-mobile computing platforms. While a num-
ber of the individua challenges bear similarity to those
addressed by PitL, we believe that their combination and
overall novelty is more appropriately described as program-
ming-in-the-many (PitM).

As a “proof-of-concept” we have outlined a specific
approach to PitM, which we have been developing over the
past two years. The centerpiece of the proposed approach is
an architectural style. The style and its accompanying model -
ing, analysis, and implementation tools ensure flexible com-
ponent-based system composition and interaction; efficient
implementation; fine-grained distribution and deployment;
dynamic reconfiguration; mobility of system models, data,
and code; and continued availability in the face of connectiv-
ity losses. Additionally, the PitM architectural style intro-
duces facilities for system self-awareness, which are
leveraged in the development and evolution of long lived,
highly distributed, dynamically evolving systems whose
ownership is potentially decentralized. We have provided
support for these capabilities in several programming lan-
guages and computing platforms (both desktop and mobile).
We have applied the PitM style and tools in the devel opment
of ahandful of applicationsto date.

While our experience thus far has been very positive, a num-
ber of pertinent issues remain unexplored. These include
ensuring trust in PitM applications, supporting configuration
management of the many involved artifacts, automatically
discovering the hardware devices and/or software compo-
nents available on the network at a given time, and allowing
architectures to (re)configure themselves “on-the-fly.” A
study of these and a number of related issues will frame our
future work. We strongly believe that it should do the same
for the software engineering community at large.
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